I. BASIC OPERATIONS WITH COMPLEX NUMBERS

For the following take $z_{1}=1+j$ and $z_{2}=3+4 j$.

1. Convert z_{1} and z_{2} to polar and exponential notation (find r, θ).
2. Plot z_{1} and z_{2} on the complex plane below.

3. Compute $z_{1}+z_{2}$. Show it graphically on a plot in the complex plane from $\# 2$.
4. Compute $z_{1}-z_{2}$. Show it graphically on a plot in the complex plane from $\# 2$
5. Compute $z_{1} z_{2}$. If you finish quickly, repeat using a different notation.
6. Compute z_{1} / z_{2}. If you finish quickly, compute z_{2} / z_{1} and compare.
7. Compute z_{1}^{4}

II. SOME PLOTS

For the following the complex numbers are given as a function of ω.

$$
\begin{aligned}
& z_{3}=\frac{1}{1+\omega j} \\
& z_{4}=\frac{\omega j}{1+\omega j}
\end{aligned}
$$

1. Convert z_{3} and z_{4} to r, θ notation.
2. Plot the magnitude r of the two complex numbers, z_{3} and z_{4}, as a function of ω on \log - \log scale. Let ω vary from 10^{-3} to 10^{3}.
3. Plot the angle θ of the two complex numbers, z_{3} and z_{4}, as a function of ω on \log - \log scale.Let ω vary from 10^{-3} to 10^{3}.
