
## I. BASIC OPERATIONS WITH COMPLEX NUMBERS

For the following take  $z_1 = 1 + j$  and  $z_2 = 3 + 4j$ .

- 1. Convert  $z_1$  and  $z_2$  to  $r, \theta$  notation.
- 2. Plot  $z_1$  and  $z_2$  on the complex plane.



- 3. Compute  $z_1 + z_2$ . Show it graphically on a plot in the complex plane from #2.
- 4. Compute  $z_1-z_2$ . Show it graphically on a plot in the complex plane from #2
- 5. Compute  $z_1z_2$
- 6. Compute  $z_1/z_2$
- 7. Compute  $z_1^4$
- 8. Compute  $\sqrt{z_2}$

## II. SOME PLOTS

For the following the complex numbers are given as a function of  $\omega$ .

$$z_3 = \frac{1}{1 + \omega j}$$

$$z_4 = \frac{\omega j}{1 + \omega j}$$

- 1. Convert  $z_3$  and  $z_4$  to  $r,\theta$  notation.
- 2. Plot the magnitude r of the two complex numbers,  $z_3$  and  $z_4$ , as a function of  $\omega$  on log-log scale. Let  $\omega$  vary from  $10^{-3}$  to  $10^3$ .
- 3. Plot the angle  $\theta$  of the two complex numbers,  $z_3$  and  $z_4$ , as a function of  $\omega$  on log-log scale.Let  $\omega$  vary from  $10^{-3}$  to  $10^3$ .