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1.4 Another Stupid Op-Amp Trick

In this section, we consider another useful op-amp circuit, using the ideas that we developed
in the Section 1.1 to analyze and to reason about its behavior. As before, we shall assume
that the circuit is made from a rail-to-rail op amp that is powered from a single-ended supply
from 0 V to Vdd unless otherwise stated.

1.4.1 Band-Pass Amplifier/Filter

Consider the circuit shown in Fig. 10 comprising an op amp, two resistors, R1 and R2, and
two capacitors, C1 and C2. As with the first-order low-pass filter/amplifier circuit, the op
amp’s output voltage, Vout, which is the output of the circuit as a whole, is fed back into the
op amp’s inverting input through both R2 and C2, which are in parallel with each other. As
with the first-order high-pass filter/amplifier circuit, this circuit’s input voltage, Vin, couples
into the op amp’s inverting input through C1 and R1, which are connected in series with
each other. The op amp’s noninverting input is held at a constant reference voltage, Vref .

By the second observation of Section 1.1, if Vout is not to be stuck at one of the rails, then
the op amp’s inverting voltage, V2, must be equal to its noninverting input voltage, Vref . So,
by Ohm’s law, we have that

I1 =
V1 − Vref
R1

(1)

and that

I2 =
Vref − Vout

R2

. (2)

Similarly, from the capacitor’s current-voltage relationship, we have that

Ic1 = C1
d

dt
(Vin − V1) (3)

and that

Ic2 = C2
d

dt
(Vref − Vout) . (4)

By applying KCL at the node between C1 and R1 and by using Eq. 1 and Eq. 3, we have
that

C1
d

dt
(Vin − V1)︸ ︷︷ ︸
Ic1

=
V1 − Vref
R1︸ ︷︷ ︸
I1

,

which we can rearrange to find that

R1C1︸ ︷︷ ︸
τ1

d

dt
(Vin − Vref + Vref − V1) = (V1 − Vref) ,
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Figure 10: Schematic of a band-pass filter/amplifier circuit. The corner frequency of the
high-pass part of circuit’s response is given by ωc1 = 1/τ1 = 1/R1C1, and the corner frequency
of the low-pass part of the circuit’s response is given by ωc2 = 1/τ2 = 1/R2C2. Assuming
that ωc1 � ωc2, the circuit will have a flat pass band extending from ωc1 to ωc2 with a
pass-band gain of A = −R2/R1. Outside of the pass band, the input will be attenuated at
a rate of 20 dB/decade.

where we have introduced a first time constant, τ1 = R1C1, and added zero in the form of
Vref−Vref inside the time derivative on the left side of the equation. We can further rearrange
this equation to find that

τ1
d

dt
(Vin − Vref)− τ1

d

dt
(V1 − Vref) = (V1 − Vref)

or equivalently

τ1
d

dt
(V1 − Vref) + (V1 − Vref) = τ1

d

dt
(Vin − Vref) .

By introducing shifted voltage variables, Uin = Vin − Vref and U1 = V1 − Vref , into this
equation, we have that

τ1
dU1

dt
+ U1 = τ1

dUin

dt
. (5)

This equation is the governing equation for a first-order high-pass filter with a pass-band
gain of unity and a corner frequency at ωc1 = 1/τ1, so the intermediate node voltage V1 is a
high-pass-filtered version of Vin.

By applying KCL to the node connected to the op amp’s inverting input and by using
Eq. 1, Eq. 2, and Eq. 4, we have that

V1 − Vref
R1︸ ︷︷ ︸
I1

=
Vref − V2
R2︸ ︷︷ ︸
I2

+C2
d

dt
(Vref − Vout)︸ ︷︷ ︸
Ic2

,

which we can rearrange by multiplying both sides by −R2 to find that

−R2

R1︸ ︷︷ ︸
A

(V1 − Vref) = (Vout − Vref) +R2C2︸ ︷︷ ︸
τ2

d

dt
(Vout − Vref) ,
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where we have introduced a second time constant, τ2 = R2C2, and a gain, A = −R2/R1. By
introducing shifted voltage variables, U1 = V1−Vref and Uout = Vout−Vref , into this equation,
we have that

τ2
dUout

dt
+ Uout = AU1. (6)

This equation is the governing equation for a first-order low-pass filter/amplifier with a pass-
band gain of A and a corner frequency at ωc2 = 1/τ2. So, the output of this circuit will be
an amplified, low-pass-filtered version of V1, which, in turn, is a high-pass-filtered version of
Vin. Consequently, as a whole, this circuit is a band-pass filter/amplifier. Assuming that we
choose R1, R2, C1, and C2 so that ωc1 � ωc2, the circuit will have a flat pass band extending
from ωc1 to ωc2 with a pass-band gain of A. Outside of the pass band, the input will be
attenuated at a rate of 20 dB/decade (i.e., one decade for each decade of frequency beyond
the corners in either direction).

Now, we shall use some of the ideas that we have been developing about complex numbers
and complex exponentials to analyze the response of this circuit to a sinusoidal input signal
at some angular frequency, ω. To do so, we shall assume that an input signal, Uin, of the
form

Uin(t) = U0e
jωt, (7)

where U0 is a (real) constant voltage amplitude, gives rise to an intermediate output, U1, of
the form

U1(t) = A1Uin(t), (8)

where A1 is a (complex) dimensionless gain factor (possibly a function of ω, but not a
function of time) that accounts for both changes in amplitude (via the magnitude) and in
phase (via the angle) of the intermediate output signal relative to the input signal due to
the high-pass filter. We shall also assume that the intermediate output, U1, gives rise to an
output signal, Uout, of the form

Uout(t) = A2U1(t) = A2A1Uin(t) = A2A1U0e
jωt, (9)

where A2 is a (complex) dimensionless gain factor that accounts for both changes in ampli-
tude and in phase of the output signal relative to the intermediate output signal due to the
low-pass filter/amplifier.

By substituting Eq. 7 and Eq. 8 into Eq. 5, we find that

τ1
d

dt

(
A1U0e

jωt
)

+ A1U0e
jωt = τ1

d

dt

(
U0e

jωt
)
,

which implies that
jωτ1A1U0e

jωt + A1U0e
jωt = jωτ1U0e

jωt.

By dividing both sides of this equation by U0e
jωt (which is never zero), we obtain

A1 (jωτ1 + 1) = jωτ1,

which we can solve for A1 to find that

A1 =
jωτ1

1 + jωτ1
=

ωτ1 · ejπ/2√
1 + (ωτ1)

2 · ej tan−1(ωτ1/1)

=
ωτ1√

1 + (ωτ1)
2
· ej((π/2)−tan−1(ωτ1)).
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Similarly, by substituting Eq. 8 and Eq. 9 into Eq. 6, we find that

τ2
d

dt

(
A2A1U0e

jωt
)

+ A2A1U0e
jωt = AA1U0e

jωt,

which implies that
jωτ2A2A1U0e

jωt + A2A1U0e
jωt = AA1U0e

jωt.

By dividing both sides of this equation by A1U0e
jωt (which is never zero if ω 6= 0), we find

that
A2 (jωτ2 + 1) = A,

which we can rearrange to solve for A2, thereby obtaining

A2 =
A

1 + jωτ2
=

|A|ejπ√
1 + (ωτ2)

2 · ej tan−1(ωτ2/1)

=
|A|√

1 + (ωτ2)
2
· ej(π−tan−1(ωτ2)).

From Eq. 9, the overall response of the circuit to a sinusoidal input is characterized by

A1A2 =
jωτ1

1 + jωτ1
· A

1 + jωτ2

=
ωτ1√

1 + (ωτ1)
2
· |A|√

1 + (ωτ2)
2
· ej((3π/2)−tan−1(ωτ1)−tan−1(ωτ2)),

where A = −R2/R1, τ1 = R1C1, and τ2 = R2C2.
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