
Analysis of RC filters

Low-pass filter

Consider a resistor and capacitor arranged in series as shown in Figure 1. This circuit is the same one we studied
last week. In last week’s lab we drove this circuit with a low frequency square wave at Vin and watched the voltage
at Vout exponentially converge as the capacitor charged. We also saw that if we increased the frequency of the square
wave, we reached as state where the capacitor didn’t fully charge such that Vout was less than Vin. As we continued
to increase the frequency, the capacitor had no time to charge and thus the voltage Vout became relatively constant
at the the average value of Vin.
Now let’s consider this same problem a little more analytically but using a sinusoidal input voltage. The resistor is

driven with an external sources as Vin = V sin(ωt) where the frequency ω would be in radians/second and is something
we control. Since the circuit is composed of linear components, then the output voltage must of the same frequency
as the input signal. By linear components we mean that the voltage and current are linearly related - not that the
current is proportional to the square of the voltage or some other such law. At this point, we will ask you to accept
that the frequency of the output doesn’t change and we can check this experimentally in the lab to confirm the
assumption. While the frequency of the output can’t change, the amplitude can and there can also be a shift in phase
from output to input. For example, if the input was a sine and the output was a cosine, we would say the output
shifted in phase by 90 degrees. In general, the output will have a form Vout = AV sin(ωt+ ϕ). Here, A represents the
relative amplitude of the output compared to the input and ϕ the phase.

R

C

Vin=V sin(ωt) Vout=A V sin(ωt+φ)

i

FIG. 1 Low-pass filter circuit with resistor and capacitor in series.

Now let’s use our basic circuit laws to analyze this circuit in more detail. The current through the resistor is,

I =
Vin − Vout

R
.

and the current through the capacitor is,

I = C
dVout

dt
.

Since the two parts are in series, Kirchoff’s current law would state that the current through the resistor must equal
that through the capacitor,

RC
dVout

dt
= Vin − Vout.

At this point the resulting equation is exactly what we saw last week.
Experimentally, if we check the output of this circuit we would see that while perhaps there is some short transient

behavior, very quickly the output reaches a sinusoidal steady state. The output of the circuit is a sine wave of a
certain amplitude and a phase relative to the input sine wave. This output sine wave repeats and repeats with no
change. We are interested in figuring out the amplitude and phase once the output has reached this periodic steady
state.
If we assume the generic sinusoidal forms of the input and output voltage and substitute those into our equations,

Vin = V sin(ωt) and Vout = AV sin(ωt+ ϕ), we have

RCωAV cos(ωt+ ϕ) = V sin(ωt)−AV sin(ωt+ ϕ).
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Using trigonometric identities (that I always forget but can easily look up on wikipedia), we can obtain

RCωA (cos(ωt)cos(ϕ)− sin(ωt)sin(ϕ)) = sin(ωt)−A (sin(ωt)cos(ϕ) + cos(ωt)sin(ϕ)) .

The only way this equation can be true at all times is that if all the terms with cos(ωt) and sin(ωt) balance separately.
Grouping all the terms with cosine together we have

RCωAcos(ωt)cos(ϕ) = −Acos(ωt)sin(ϕ)

Canceling Acos(ωt) from both sides gives,

RCωcos(ϕ) = −sin(ϕ)

or

tan(ϕ) = −RCω.

This equation tells us the phase between the output and the input. There are a few interesting things about this
equation. First, we notice that the product RC must have units of time (seconds if we express R in ohms and C in
farads). Since the tangent is a unitless function, the term RCω must have no units. Second, we can also easily see
the low and high frequency limits - when ω → 0, then ϕ → 0 and when ω → ∞, then ϕ → −90 degrees. Finally, when
RCω = 1 then we are halfway between the low and high frequency limit with ϕ = 45 degrees. The frequency given
by 1

RC radians/sec provides the measure of what we consider to be “high” or “low” frequency.
Now we go back and group the sin(ωt) terms to obtain,

−RCωAsin(ωt)sin(ϕ) = −Asin(ωt)cos(ϕ) + sin(ωt).

Canceling the sin term and rearranging we obtain,

A =
1

cos(ϕ)−RCωsin(ϕ)
.

This expression gives the amplitude of the output divided by the amplitude of the input. In the low frequency limit,
we have A → 1 and at high frequency we have A → 1

RCω .
We can get a better handle on what is happening by generating a plot. We can easily generate this plot in MATLAB

as follows.

• RC = 1;

• omega = logspace(-2,2,100);

• phi = atan(-RC*omega);

• A = 1./(cos(phi) - RC*omega.*sin(phi));

• subplot(2,1,1); loglog(omega,A);

• subplot(2,1,2); semilogx(omega,phi*90/(pi/2));

The result of these commands is shown in Figure 2.
This plot tells us everything we ever would hope to know about this circuit. It tells us how the output amplitude

and phase change as a function of frequency. This type of plot is usually referred to as a Bode (Bo Dee) plot. This
circuit is called a low-pass filter as it tends to allow low frequency signals through unchanged. At low frequency the
output amplitude is the same as the input and the phase between output and input is zero. At high frequency the
output amplitude decreases as the frequency decreases. Notice that by convention, I have used log-log and linear-log
coordinates for the amplitude and phase. The use of log coordinates on the x-axis allows us to more clearly see what
is happening over many orders of magnitude in frequency (4 in this case). The use of log coordinates on the y-axis
in the amplitude plot allows us to see how the signal decreases over many orders of magnitude. In this case we can
clearly see form the plot, that at high frequency, a factor of ten increase in frequency gives a factor of 10 decrease in
amplitude. Power law functions show up as straight lines on log-log plots.
A better form for our answer uses the trigonometric identities to reduce the amplitude equation to a more explicit

form. We are doing nothing more than re-arranging the equations into a simpler form. Namely we can use the
relations that state,

cos(−tan−1(RCω)) =
1√

1 +R2C2ω2
,
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FIG. 2 Low pass filter. Relative amplitude as a function of frequency and the phase angle in degrees as a function of frequency
when RC = 1..

sin(−tan−1(RCω)) =
−RCω√

1 +R2C2ω2
.

Again, these are trigonometric identities that I would not expect you remember but are easy to look up.
Substituting these trig identities into the amplitude equation provides,

A =
1

1√
1+R2C2ω2

+ R2C2ω2√
1+R2C2ω2

=
1√

1 +R2C2ω2

This form of the amplitude equation provides a much simpler interpretation of the Bode plot than the implicit
amplitude equation in terms of the trigonometric functions. When RCω → 0 then A → 1. When RCω → ∞ then
A → 1

RCω .

High-pass filter

Now let’s change the order of the parts and see what happens. The current through the resistor is

R

C

Vin=V sin(ωt) Vout=A V sin(ωt+φ)

i

FIG. 3 High-pass filter circuit.

I =
Vout

R
.

and the current through the capacitor is,

I = C
d (Vin − Vout)

dt
.
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Thus

RC
d (Vin − Vout)

dt
= Vout.

Substituting in the generic sinusoidal form as before gives us,

RCω (V cos(ωt)−AV cos(ωt)cos(ϕ) +AV sin(ωt)sin(ϕ)) = AV (sin(ωt)cos(ϕ) + cos(ωt)sin(ϕ))

Grouping the sine terms together gives,

tan(ϕ) =
1

RCω
.

and the cosine terms give,

A =
RCω

sin(ϕ) +RCωcos(ϕ)
.

At this point we could use MATLAB to create the plot of amplitude and phase as a function of frequency, simply
modifying the script from above. The plot of the amplitude and phase as a function of frequency is shown in Figure
4.
We could also rearrange the equation and get a different form by using our trig identities again,

cos

(
tan−1

(
1

RCω

))
=

1√
1 + 1

R2C2ω2

=
RCω√

R2C2ω2 + 1
,

sin

(
tan−1

(
1

RCω

))
=

1
RCω√

1 + 1
R2C2ω2

=
1√

R2C2ω2 + 1
,

Combining the expressions gives the amplitude as

A =
RCω√

R2C2ω2 + 1
.

Here the behavior is opposite as before. As the frequency goes to infinity the phase goes to zero and the relative
amplitude, A, becomes 1. As the frequency goes to zero, the phase goes to 90 degrees and the relative amplitude
becomes A → RCω.
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FIG. 4 High pass filter. Relative amplitude as a function of frequency and the phase angle in degrees as a function of frequency
when RC = 1.


