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1.5 Gain/Bandwidth Trade-Off

In this section, we shall revisit the second of our observations about op amps of Section
1.1, which we have used extensively in our analysis of op-amp circuits so far. Recall that
it was based on examining the op amp’s VTC, which is a plot of a circuit’s steady-state
output voltage as a function of its input voltage. By using this observation, we are making
the assumption that the system is operating quasistatically—that is, we are assuming that
all of the voltages and currents in the circuit are varying on a much slower timescale than
that which characterizes the op amp’s internal dynamics, which is typified by the op amp’s
gain-bandwidth product,1 ω1. In order to account for the op amp’s internal dynamics in
analyzing a given circuit, we shall replace our assumption that, in order for the op amp’s
output not to be stuck at one of the rails, the two input voltages must be equal to each other
with the assumption that the op amp’s output voltage changes at a rate that is given by

dVout

dt
= ω1 (Vpos − Vneg) . (1)

However, for op-amp circuits operating on a single-ended supply where we typically reference
our voltages to a reference voltage, Vref , we shall often find it more convenient to add zero
to both sides of this equation to obtain

dVout

dt
− dVref

dt
= ω1 (Vpos − Vref + Vref − Vneg) ,

or equivalently
d

dt
(Vout − Vref) = ω1 ((Vpos − Vref)− (Vneg − Vref)) . (2)

In order to see the effects of the op amp’s internal dynamics, we shall use Eq. 1 or Eq. 2
to analyze the unity-gain follower, the noninverting amplifier, and the inverting amplifier.
In each case, we shall find the circuit is actually a low-pass filter/amplifier, behaving as we
had previously analyzed only at low frequencies. We shall also see that there is a trade-off
between its (low-frequency) gain and its bandwidth so that the product of an amplifier’s
gain and its bandwidth is nearly equal to the op amp’s gain-bandwidth product (whence the
name). For example, if our op amp has a gain-bandwidth product of 1 MHz and we use it
to make a unity-gain follower, the follower will have a bandwidth of 1 MHz. If we use that
same op amp to make an amplifier with a gain of 10, the amplifier will have a bandwidth
of 1 MHz/10 = 100 kHz. If we use it to make an amplifier with a gain of 100, the resulting
amplifier will have a bandwidth of 1 MHz/100 = 10 kHz. If we use it to make an amplifier
with a gain of 1000, the resulting amplifier would have a bandwidth of 1 MHz/1000 = 1 kHz,
and so on.

1This assumption holds so long as the op amp’s input voltage difference is small enough that the rate of
change of the op amp’s output voltage is not limited by the op amp’s slew rate.
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Figure 11: Unity-gain follower (a) circuit schematic and (b) frequency response character-
istic (i.e., magnitude and phase Bode plots). This circuit behaves as a low-pass filter with a
pass-band gain of unity and a corner frequency at ω1. It acts as we found in Section 1.2.1 only
for low frequencies. Deviations from the ideal behavior start to become discernible in the
phase response about an order of magnitude below the corner frequency (i.e., at ω ≈ 1

10
ω1)

and in the magnitude at about an octave below the corner frequency (i.e., at ω ≈ 1
2
ω1).

1.5.1 Unity-Gain Follower/Buffer Revisited

Consider the unity-gain follower circuit, shown in Fig. 11a. To investigate how the op amp’s
internal dynamics shape the behavior of this circuit at frequencies approaching the op amp’s
gain-bandwidth product, we make use of Eq. 1 in place of the second observation of Section
1.1, which for this circuit implies that

dVout

dt
= ω1 (Vin − Vout) ,

which we can rearrange to find that

1

ω1

dVout

dt
+ Vout = Vin. (3)

This equation is the governing equation for a first-order low-pass filter with a pass-band gain
of unity and a corner frequency at ω1.

To analyze the response of the unity-gain follower to a sinusoidal input signal at some
angular frequency, ω, we assume that an input signal of the form

Vin(t) = V0e
jωt, (4)

where V0 is a (real) constant voltage amplitude, gives rise to an output signal of the form

Vout(t) = HV0e
jωt, (5)
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where H is a (complex) dimensionless gain factor (possibly a function of ω, but not a function
of time) that accounts for both changes in amplitude (via the magnitude) and in phase (via
the angle) of the output signal relative to the input signal.

By substituting Eq. 4 and Eq. 5 into Eq. 3, we find that

1

ω1

d

dt

(
HV0e

jωt
)

+ HV0e
jωt = V0e

jωt,

which implies that
jω

ω1

HV0e
jωt + HV0e

jωt = V0e
jωt.

By dividing both sides of this equation by V0e
jωt, we obtain

H

(
jω

ω1

+ 1

)
= 1,

which we can solve for H to find that

H =
1

1 + jω/ω1

=
1√

1 + (ω/ω1)
2
· e−j tan−1(ω/ω1).

Fig. 11b shows magnitude and phase Bode plots of H as a function of ω for the unity-
gain follower. On this analysis, the circuit is a low-pass filter with a corner frequency at
ω1, behaving as we found in Section 1.2.1 only at low frequencies. Deviations from the ideal
behavior start to become noticeable in the phase response about an order of magnitude below
the corner frequency (i.e., at ω ≈ 1

10
ω1) and in the magnitude at about an octave below the

corner frequency (i.e., at ω ≈ 1
2
ω1).

1.5.2 Noninverting Amplifier Revisited

Consider the noninverting amplifier circuit, shown in Fig. 12a. In order to investigate how
the op amp’s dynamics affects the response of this circuit as the input signal frequency
approaches the op amp’s gain-bandwidth product, we shall make use of Eq. 2 where we had
previously used the second observation of Section 1.1. Applying this equation to the circuit
of Fig. 12a, we have that

d

dt
(Vout − Vref) = ω1 ((Vin − Vref)− (V − Vref)) . (6)

Because op amp’s inverting input draws no current, then the voltage across R2, V −Vref ,
is related to the total voltage across the series combination of R1 and R2, Vout − Vref , by
through a resistive voltage divider ratio, given by

V − Vref = (Vout − Vref)
R2

R1 + R2

. (7)

By substituting Eq. 7 into Eq. 6, we obtain

d

dt
(Vout − Vref) = ω1

(
(Vin − Vref)− (Vout − Vref)

R2

R1 + R2

)
,
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Figure 12: Noninverting amplifier (a) circuit schematic and (b) frequency response char-
acteristic (i.e., magnitude and phase Bode plots) for two values of the low-frequency gain:
A1 (red) and A2 (blue). This circuit behaves as a low-pass filter with a pass-band gain of
A = 1+R1/R2 and a corner frequency at ωc = ω1/A. So, it acts as we found in Section 1.2.2
only for low frequencies (i.e., ω � ωc). Note that A and ωc are inversely related to each
other so that there is an inherent trade-off between gain and bandwidth for this circuit.

which we can rearrange to find that

1

ω1

d

dt
(Vout − Vref) +

R2

R1 + R2

(Vout − Vref) = (Vin − Vref) .

By multiplying both sides of this equation by 1 + R1/R2, we have that

1/ωc︷ ︸︸ ︷(
1 +

R1

R2︸ ︷︷ ︸
A

)
1

ω1

d

dt
(Vout − Vref) + (Vout − Vref) =

(
1 +

R1

R2︸ ︷︷ ︸
A

)
(Vin − Vref) ,

where A = 1+R1/R2 is the (low-frequency) gain of the noninverting amplifier and ωc = ω1/A
is a corner frequency in the noninverting amplifier’s response due to the op amp’s internal
dynamics. By defining shifted voltage variables by Uin = Vin − Vref and Uout = Vout − Vref ,
we can re-express this equation as

1

ωc

dUout

dt
+ Uout = AUin, (8)

which is the governing equation for a first-order low-pass filter/amplifier with a pass-band
gain of A and a corner frequency at ωc.

To analyze the response of the noninverting amplifier to a sinusoidal input signal at some
angular frequency, ω, we assume that an input signal of the form

Uin = U0e
jωt, (9)

4



where U0 is a (real) constant voltage amplitude, results in an output signal of the form

Uout = HU0e
jωt, (10)

where H is a (complex) dimensionless gain factor (possibly a function of ω, but not a function
of time) that accounts for both changes in amplitude (via the magnitude) and in phase (via
the angle) of the output signal relative to the input signal.

By substituting Eq. 9 and Eq. 10 into Eq. 8, we find that

1

ωc

d

dt

(
HU0e

jωt
)

+ HU0e
jωt = AU0e

jωt,

which implies that
jω

ωc

HU0e
jωt + HU0e

jωt = AU0e
jωt.

By dividing both sides of this equation by U0e
jωt, we have that

H

(
jω

ωc

+ 1

)
= A,

which we can solve for H to obtain

H =
A

1 + jω/ωc

=
A√

1 + (ω/ωc)
2
· e−j tan−1(ω/ωc).

Fig. 12b shows magnitude and phase Bode plots of H as a function of ω for the nonin-
verting amplifier for two different values of the low-frequency gain: A1 (red) and A2 (blue).
Note here that the amplifier’s corner frequency, ωc, is related to the low-frequency gain in
such a way that the higher the gain, the smaller the bandwidth. For this circuit, the two
are, in fact, inversely related to each other so that

ωc =
ω1

A
,

or equivalently
Aωc = ω1,

which is why ω1 is called the gain-bandwidth product.

1.5.3 Inverting Amplifier Revisited

Consider the noninverting amplifier circuit, shown in Fig. 13a. In order to investigate how
the op amp’s dynamics affects the response of this circuit as the input signal frequency
approaches the op amp’s gain-bandwidth product, we shall make use of Eq. 2 where we had
previously used the second observation of Section 1.1. Applying this equation to the circuit
of Fig. 13a, we have that

d

dt
(Vout − Vref) = ω1 ((Vref − Vref)− (V − Vref)) = ω1 (Vref − V ) ,
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Figure 13: Inverting amplifier (a) circuit schematic and (b) frequency response characteris-
tic (i.e., magnitude and phase Bode plots) for three values of the low-frequency gain: minus
one (green), A1 (red), and A2 (blue). This circuit behaves as a low-pass filter/amplifier with
a pass-band gain of A = −R2/R1 and a corner frequency at ωc = ω1/(1− A). So, it acts as
we found in Section 1.2.3 only for low frequencies (i.e., ω � ωc). Note that, for |A| � 1, |A|
and ωc are inversely related to each other so that there is an inherent trade-off between gain
and bandwidth for this circuit.

which we can solve for V to obtain

V = Vref −
1

ω1

d

dt
(Vout − Vref) . (11)

Because the op amp’s inverting input draws a negligible amount of current, by applying
KCL at node V and Ohm’s law for R1 and R2, we find that

Vin − V

R1︸ ︷︷ ︸
I1

=
V − Vout

R2︸ ︷︷ ︸
I2

,

which upon multiplying both sides by −R2 becomes

Vout − V = −R2

R1

(Vin − V ) .

By substituting Eq. 11 into this equation, we find that

(Vout − Vref) +
1

ω1

d

dt
(Vout − Vref) = −R2

R1

(
Vin − Vref +

1

ω1

d

dt
(Vout − Vref)

)
= −R2

R1

(Vin − Vref)−
R2

R1

1

ω1

d

dt
(Vout − Vref) ,
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which we can rearrange to get

1/ωc︷ ︸︸ ︷(
1 +

R2

R1︸ ︷︷ ︸
1− A

)
1

ω1

d

dt
(Vout − Vref) + (Vout − Vref) = −R2

R1︸ ︷︷ ︸
A

(Vin − Vref) ,

where A = −R2/R1 is the (low-frequency) gain of the inverting amplifier and ωc = ω1/ (1− A)
is a corner frequency in the inverting amplifier’s response due to the op amp’s internal dy-
namics. By defining shifted voltage variables Uin = Vin − Vref and Uout = Vout − Vref , we can
re-express this equation as

1

ωc

dUout

dt
+ Uout = AUin, (12)

which is the governing equation for a first-order low-pass filter/amplifier with a pass-band
gain of A and a corner frequency at ωc.

To analyze the response of the inverting amplifier to a sinusoidal input signal at some
angular frequency, ω, we assume that an input signal of the form

Uin = U0e
jωt, (13)

where U0 is a (real) constant voltage amplitude, results in an output signal of the form

Uout = HU0e
jωt, (14)

where H is a (complex) dimensionless gain factor (possibly a function of ω, but not a function
of time) that accounts for both changes in amplitude (via the magnitude) and in phase (via
the angle) of the output signal relative to the input signal.

By substituting Eq. 13 and Eq. 14 into Eq. 12, we find that

1

ωc

d

dt

(
HU0e

jωt
)

+ HU0e
jωt = AU0e

jωt,

which implies that
jω

ωc

HU0e
jωt + HU0e

jωt = AU0e
jωt.

By dividing both sides of this equation by U0e
jωt, we have that

H

(
jω

ωc

+ 1

)
= A,

which we can solve for H to obtain

H =
A

1 + jω/ωc

=
|A|√

1 + (ω/ωc)
2
· ej(π−tan−1(ω/ωc)).

Fig. 13b shows magnitude and phase Bode plots of H as a function of ω for the inverting
amplifier for three different values of the low-frequency gain: minus one (green), A1 (red),
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and A2 (blue). Note here that, as with the noninverting amplifier, the inverting amplifier’s
corner frequency, ωc, is related to the low-frequency gain in such a way that the higher the
gain, the smaller the bandwidth. For this circuit, the trade-off between the magnitude of its
low-frequency gain and its bandwidth is given by

|A|ωc = |A| ω1

1− A
=
|A|

1− A
ω1 ≈ ω1,

if |A| � 1.
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