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1.3 More Stupid Op-Amp Tricks

In this section, we shall consider several additional useful op-amp circuits, using the ideas
that we developed in the Section 1.1 to analyze and to reason about their behavior. As
before, we shall assume that each circuit is made from a rail-to-rail op amp that is powered
from a single-ended supply from 0 V to Vdd unless otherwise stated.

1.3.1 Difference Amplifier

Consider the circuit shown in Fig. 6 comprising one op amp and four resistors. Here, there
are two input voltages, Vin1 and Vin2, which couple respectively into the op amp’s inverting
and noninverting inputs through two matched resistors, each of value R1. The op amp’s
output, which is also the output of the circuit as a whole is fed back into the op amp’s
inverting input through a resistor of value R2, and a reference voltage, Vref , couples into the
op amp’s noninverting input through a second resistor of value R2.

In the bottom half of the circuit, because the op amp’s inverting input draws no current,
all of the current flowing through R1 must also flow through R2. By applying Ohm’s law,
we have that

Vin2 − Vn
R1︸ ︷︷ ︸
I1

=
Vn − Vout

R2︸ ︷︷ ︸
I2

,

which we can rearrange to find that

Vout = −R2

R1

Vin2 +

(
1 +

R2

R1

)
Vn. (1)

In the top half of the circuit, because the op amp’s noninverting input draws no current,
we can relate the voltage, Vp − Vref , across R2 to the total voltage, Vin1 − Vref , across both
R1 and R2 using the voltage divider rule, yielding

Vp − Vref = (Vin1 − Vref)
R2

R1 +R2

,

which we can solve, in turn, for Vp, obtaining

Vp = Vref + (Vin1 − Vref)
R2

R1 +R2

. (2)

Now, by the second observation in Section 1.1, in order for Vout not to be stuck at one of the
rails, we must have that

Vn = Vp,
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Figure 6: Schematic of an op-amp difference amplifier circuit. Here the op amp’s noninvert-
ing input voltage, Vp, is set to somewhere between Vin1 and Vref through a resistive voltage
divider. The op amp’s output voltage will adjust itself so that the op amp’s inverting input
voltage, Vn, becomes equal to Vp. Note that, in this circuit, Vn is related to Vin1 and Vout
in precisely the same way as Vp is related to Vin1 and Vref . If the op amp’s output is not
stuck at one of the rails, the output voltage is given by Vout = Vref + A (Vin1 − Vin2), where
A = R2/R1 is the gain of the circuit.

so we can substitute Eq. 2 into Eq. 1 to find an expression for Vout, which is given by

Vout = −R2

R1

Vin2 +

(
1 +

R2

R1

)
Vref +

(
1 +

R2

R1

)
R2

R1 +R2

(Vin1 − Vref)

= Vref −
R2

R1

(Vin2 − Vref) +
R1 +R2

R1

· R2

R1 +R2

(Vin1 − Vref)

= Vref −
R2

R1

(Vin2 − Vref) +
R2

R1

(Vin1 − Vref)

= Vref +
R2

R1︸︷︷︸
A

(Vin1 − Vin2) .

So, the circuit produces an output voltage that is proportional to the difference between the
two inputs by a gain, A = R2/R1, that is set by the ratio of the two resistors in the circuit.
As with the simple inverting amplifier, we can make the gain of this circuit smaller than one,
equal to one, or greater than one by our choice of R1 and R2.

1.3.2 Three-Op-Amp Instrumentation Amplifier

Consider the circuit shown in Fig. 7 comprising three op amps, six resistors of value R, and
one gain resistor of value Rg. This circuit, which is called the three-op-amp instrumentation
amplifier. We can divide this circuit into two stages. The first stage has two inputs, Vin1 and
Vin2, and two outputs, V3 and V4, and comprises the two op amps on the left, two resistors of
value R and a gain resistor of value Rg. The second stage is the difference amplifier of Fig. 6
with input voltages of V3 and V4 and with R1 = R2 = R, which makes its gain one. Although
we could build this circuit from a quad op amp chip and discrete resistors, it is very common
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Figure 7: Schematic of a three-op-amp instrumentation amplifier circuit. Note that this
circuit effectively has two stages. The first stage has two inputs, Vin1 and Vin2, and two
outputs, V3 and V4, and comprises the two op amps on the left, two resistors of value R
and a gain resistor of value Rg. The second stage is the difference amplifier of Fig. 6 with
R1 = R2 = R, which makes its gain one. If the op amp’s outputs are not stuck at the rails,
the output voltage is given by Vout = Vref +A (Vin1 − Vin2), where A = 1 + 2R/Rg is the gain
of the circuit.

for the three op amps and the six matched resistors to be integrated together on the same
chip1 and an external gain resistor through which we can set the circuit’s gain. While it
is certainly more convenient to have all those components integrated together on a single
chip so we do not have to wire the circuit together, the main advantage of the integrated
instrumentation amplifier is that the six resistors of value R can be matched to one another
to a much tighter tolerance (e.g., ±0.1% or better) than the ±1% of the discrete resistors
that we commonly use in lab. The matching of the four resistors in the second stage is
critical to the performance of this circuit.

From our analysis of the difference amplifier in the last section, we know that, assuming
that Vout is not stuck at one of the rails,

Vout = Vref +
R

R
(V3 − V4) = Vref + (V3 − V4) . (3)

So, to analyze the circuit, all that remains for us to do is to determine how the quantity
V3 − V4 relates to Vin1 and Vin2. Because the op amp’s inverting inputs draw no current, by
applying Kirchhoff’s current law (KCL) to nodes V1 and V2, we find that the same current, I,

1The AD623 that we have been using in the labs this semester has these components inside it with
R = 50 kΩ.
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must flow through the three vertically oriented resistors, as shown in Fig. 7. Assuming that
V3 is not stuck at one of the rails, V1 must be equal to Vin1. Similarly, if V4 is not stuck at
one of the rails, V2 must be equal to Vin2. Consequently, the voltage across the gain resistor,
Rg, is just given by the input voltage difference, Vin1 − Vin2. So, by applying Ohm’s law to
Rg, we have that

I =
V1 − V2
Rg

=
Vin1 − Vin2

Rg

. (4)

Because the same current, I, flows through all three vertically oriented resistors, they are
just connected in series with one another, and so we can consider them to behave as a single
equivalent resistor of value Req = R + Rg + R = Rg + 2R. We know that the total voltage
across this equivalent resistor is V3 − V4, so from Ohm’s law, we have that

I =
V3 − V4
Req

=
V3 − V4
Rg + 2R

. (5)

By equating Eq. 4 and Eq. 5 and rearranging, we find that

V3 − V4 =
Rg + 2R

Rg

(Vin1 − Vin2) =

(
1 +

2R

Rg

)
(Vin1 − Vin2) ,

which we can substitute into Eq. 3 to find that, provided none of the op amp’s outputs are
stuck at one of the rails,

Vout = Vref +

(
1 +

2R

Rg

)
︸ ︷︷ ︸

A

(Vin1 − Vin2) .

From this result, it is apparent both the difference amplifier and the instrumentation
amplifier perform the same basic function, so you might be wondering why bother using
the instrumentation amplifier? The instrumentation amplifier has two primary advantages
over the simpler difference amplifier. First, the instrumentation amplifier’s inputs draw no
current, because they are op amp inputs, which is not true for the difference amplifier.
Second, the gain of the instrumentation amplifier is set by a single component value (i.e.,
the gain resistor, Rg) rather than by a pair of matched components (i.e., R1 and R2), as it
is with the difference amplifier.

1.3.3 First-Order Low-Pass Amplifier/Filter

Consider the circuit shown in Fig. 8 comprising an op amp, two resistors, R1 and R2, and a
capacitor C. Here, the op amp’s output voltage, Vout, which is the output of the circuit as
a whole, is fed back into the op amp’s inverting input through both R2 and C, which are in
parallel with each other. As with the inverting amplifier circuit, this circuit’s input voltage,
Vin, couples into the op amp’s inverting input through R1. The op amp’s noninverting input
is held at a constant reference voltage, Vref .

By the second observation of Section 1.1, if Vout is not to be stuck at one of the rails,
then the op amp’s inverting input voltage, V , must be equal to the op amp’s noninverting
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Figure 8: Schematic of a first-order low-pass filter/amplifier circuit. The filter’s time
constant is given by τ = R2C, it’s corner frequency is given by ωc = 1/τ , and it’s pass-band
gain is given by A = −R2/R1.

input voltage, Vref . So, by Ohm’s law, we have that

I1 =
Vin − Vref

R1

and I2 =
Vref − Vout

R2

.

Similarly, from the capacitor’s current-voltage relationship, we have that

Ic = C
d

dt
(Vref − Vout) .

Because the op amp’s inverting input draws no current, by applying KCL at node V , we
have that

Vin − Vref
R1︸ ︷︷ ︸
I1

=
Vref − Vout

R2︸ ︷︷ ︸
I2

+C
d

dt
(Vref − Vout)︸ ︷︷ ︸
Ic

.

By multiplying both sides of this equation by −R2, we have that

R2C︸︷︷︸
τ

d

dt
(Vout − Vref) + (Vout − Vref) = −R2

R1︸ ︷︷ ︸
A

(Vin − Vref) ,

where we have defined symbols to represent the filter/amplifier’s time constant, τ = R2C,
and (pass-band) gain, A = −R2/R1. By defining shifted input and output voltage variables
by Uin = Vin − Vref and Uout = Vout − Vref , we can re-express this equation as

τ
dUout

dt
+ Uout = AUin,

which is identical to the differential equation that governed the simple RC low-pass filter
circuit that we analyzed earlier in the course except that the input voltage is amplified by
the gain A.
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Figure 9: Schematic of a first-order high-pass filter/amplifier circuit. The filter’s time
constant is given by τ = R1C, it’s corner frequency is given by ωc = 1/τ , and it’s pass-band
gain is given by A = −R2/R1.

1.3.4 First-Order High-Pass Amplifier/Filter

Consider the circuit shown in Fig. 9 comprising an op amp, two resistors, R1 and R2, and a
capacitor C. Here, the op amp’s output voltage, Vout, which is the output of the circuit as a
whole, is fed back into the op amp’s inverting input through R2. The circuit’s input voltage,
Vin, is coupled into the op amp’s inverting input through C and R1, which are connected
in series with each other. The op amp’s noninverting input is maintained at a constant
reference voltage, Vref .

By the second observation of Section 1.1, if Vout is not to be stuck at one of the rails,
then the op amp’s inverting input voltage, V2, must be equal to the op amp’s noninverting
input voltage, Vref . So, by Ohm’s law, we have that

I1 =
V1 − Vref
R1

and I2 =
Vref − Vout

R2

.

Similarly, from the capacitor’s current-voltage relationship, we have that

Ic = C
d

dt
(Vin − V1) . (6)

Because the op amp’s inverting input draws no current, by applying KCL at node V2, we
have that

V1 − Vref
R1︸ ︷︷ ︸
I1

=
Vref − Vout

R2︸ ︷︷ ︸
I2

,

which we can rearrange to solve for V1, thereby obtaining

V1 = Vref +
R1

R2

(Vref − Vout) . (7)

By substituting Eq. 7 into Eq. 6, we can express Ic as

Ic = C
d

dt

(
Vin − Vref −

R1

R2

(Vref − Vout)

)
= C

d

dt
(Vin − Vref) + C

R1

R2

· d
dt

(Vout − Vref) .
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By applying KCL at node V1, we have that Ic = I1, but we know that I1 = I2, so we
have that

C
d

dt
(Vin − Vref) + C

R1

R2

· d
dt

(Vout − Vref)︸ ︷︷ ︸
Ic

=
Vref − Vout

R2︸ ︷︷ ︸
I2

,

which we can rearrange to find that

C
R1

R2

· d
dt

(Vout − Vref) +
Vout − Vref

R2

= −C d
dt

(Vin − Vref) .

By multiplying both sides of this equation by R2, we have that

R1C
d

dt
(Vout − Vref) + (Vout − Vref) = −R2C

d

dt
(Vin − Vref) .

By multiplying the right-hand side of this equation by unity in the form of R1/R1, we have
that

R1C︸︷︷︸
τ

d

dt
(Vout − Vref) + (Vout − Vref) = −R2

R1︸ ︷︷ ︸
A

·R1C︸︷︷︸
τ

d

dt
(Vin − Vref) ,

where we have defined symbols to represent the filter/amplifier’s time constant, τ = R1C,
and (pass-band) gain, A = −R2/R1. By defining shifted input and output voltage variables
by Uin = Vin − Vref and Uout = Vout − Vref and by moving the gain, A, inside the time
derivative, we can re-express this equation as

τ
dUout

dt
+ Uout = τ

d

dt
(AUin) ,

which is identical to the differential equation that governed the simple RC high-pass filter
circuit that we analyzed earlier in the course except that the input voltage is amplified by
the gain A.
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